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Abstract

Common Failings: How
Corporate Defaults are Correlated

We develop, and apply to data on U.S. corporations from 1987-2000,
tests of the standard doubly-stochastic assumption under which firms’ de-
fault times are correlated only as implied by correlation of their default
intensity processes, for example through dependence on common or cor-
related observable risk factors. Our tests do not require assumptions on
the correlation structure of default intensities. The data do not support
the joint hypothesis of well specified default intensities and the doubly-
stochastic assumption, although we provide evidence that this may be
due to mis-specification of the default intensities, which do not include
macroeconomic default-prediction covariates. Despite this rejection, there
is at most weak evidence of default clustering in excess of that implied
by the doubly-stochastic model and correlation of the firm-specific default
covariates.
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1 Introduction

Why do corporate defaults cluster in time? Several explanations have been
explored in the literature. First, firms may be exposed to common or cor-
related risk factors whose co-movements cause correlated changes in the
conditional probabilities of defaults across firms. Second, the event of de-
fault by one firm may be “contagious,” in that this event itself can push
other firms toward default. For example, there could be a “domino” or
cascade effect, under which corporate failures directly induce other cor-
porate failures, as with the collapse of Penn Central Railway in 1970. A
third channel for default correlation is learning from defaults. For exam-
ple, the defaults of Enron and WorldCom may have revealed accounting
irregularities that could be present in other firms, and thus may have had
a direct impact on the conditional default probabilities of other firms.

Our primary objective is to examine whether correlation in default in-
tensities, that is, the first channel on its own, is sufficient to account for the
degree of default clustering that we find in the data.

Specifically, we test whether our data are consistent with the standard
doubly-stochastic model of default, under which, conditional on the path
of risk factors determining all firms’ default intensities, defaults are in-
dependent Poisson arrivals with these (conditionally deterministic) inten-
sity paths. This model is particularly convenient for computational and
statistical purposes, although its empirical relevance for default correla-
tion has been unresolved. We develop, and apply to default data for U.S.
corporations during the period 1987-2000, a test of the doubly-stochastic
assumption. The data do not support the joint hypothesis of well spec-
ified default intensities and the doubly-stochastic assumption, although
we provide evidence that this rejection may be due to mis-specification
of the default intensities, which do not include macroeconomic default-
prediction covariates. These missing macroeconomic covariates may be
responsible for some clustering of defaults. Despite the rejection based on
goodness-of-fit tests, we do not find substantial evidence of default clus-
tering beyond that predicted by the doubly-stochastic model and our data.

Understanding how corporate defaults are correlated is particularly
important for the risk management of portfolios of corporate debt. For
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example, as backing for the performance of their loan portfolios, banks re-
tain capital at levels designed to withstand default clustering at extremely
high confidence levels, such as 99.9%. Some banks do so on the basis of
models in which default correlation is captured by common risk factors
determining conditional default probabilities, as in Gordy [2003] and Va-
sicek [1987]. (Banks do, however, attempt to capture the effects of conta-
gion that arise from parent-subsidiary and other direct contractual links.)
If defaults are more heavily clustered in time than currently envisioned
in these default-risk models, however, then significantly greater capital
might be required in order to survive default losses at high confidence
levels. An understanding of the sources and degree of default clustering
is also crucial for the rating and risk analysis of structured credit products
that are exposed to correlated default, such as collateralized debt obliga-
tions (CDOs) and options on portfolios of default swaps. The Bank of
America has reported that synthetic CDO volumes reached over $500 bil-
lion in 2003, an annual growth rate of over 130%.

While there is some empirical evidence regarding the correlation of
conditional corporate default probabilities (see, for example, Das, Freed,
Geng and Kapadia, [2001]), there is relatively little evidence regarding the
presence of highly clustered defaults. Lucas [1995] and deServigny and
Renault [2002] have estimated historical average one-year default correla-
tions, but do not address the issue of clustering. Collin-Dufresne, Gold-
stein, and Helwege [2003] find that default events are associated with
significant increases in the credit spreads of other firms, consistent with
a clustering effect in excess of that suggested by the doubly-stochastic
model, or at least a failure of the doubly-stochastic model under risk-
neutral probabilities. That is, their findings may be due to default-induced
increases in the conditional default probabilities of other firms, or could
be due to default-induced increases in default risk premia1 of other firms,
as envisioned by Kusuoka [1999]. Both effects could be at play. Collin-
Dufresne, Goldstein, and Helwege do not disentangle these two chan-
nels for default-induced widening of yield spreads. Explicitly consider-

1Collin-Dufresne, Goldstein, and Huggonier [2002] provide a simple method for in-
corporating the pricing impact of failure, under risk-neutral probabilities, of the doubly-
stochastic hypothesis. Other theoretical work on the impact of contagion on default pric-
ing includes that of Cathcart and El Jahel [2002], Davis and Lo [2000], Giesecke [2002],
Kusuoka [1999], Schönbucher and Schubert [2001], Teremtyev [2003], Yu [2003], and
Zhou [2001].



How corporate defaults are correlated 3

ing a failure of the doubly-stochastic hypothesis, Collin-Dufresne, Gold-
stein, and Helwege [2003], Giesecke [2002], Jarrow and Yu [2001], and
Schönbucher [2004] explore learning-from-default interpretations, based
on the statistical modeling of frailty, under which default intensities in-
clude unobservable covariates. In a frailty setting, the arrival of a default
causes, via Bayes’ Rule, a jump in the conditional distribution of hidden
covariates, and therefore a jump in the conditional default probabilities of
any other firms whose default intensities depend on the same unobserv-
able covariates. For example, the collapses of Enron and WorldCom could
have caused a sudden reduction in the perceived precision of accounting
leverage measures of other firms. Indeed, Yu [2004] finds that, other things
equal, a reduction in the measured precision of accounting variables is as-
sociated with a widening of credit spreads. Lang and Stulz [1992] explore
evidence of default contagion in equity prices.

Before describing our data, methods, and results in detail, we offer a
brief synopsis. Our data on actual default times and on monthly estimates
of conditional probabilities of default within one year (PDs) were provided
to us by Moodys, and cover the period January, 1987 to October, 2000.
These data are described in Section 3, with further details in Appendix A.
After dropping firms for which we had missing data, we were left with
241 individual issuer defaults among a total of 1,990 firms over 216,859
firm-months of data.

From the time-series of PD data for each firm, we estimate default in-
tensities for each firm, using a simple time-series model of intensities. For
this, we assume that the default intensity process for each firm is a Feller
diffusion (also known as a Cox-Ingersoll-Ross process, or a square-root
diffusion). The fitting procedure is outlined in Section 3.2. The current in-
tensity level measured from the one-year default probability is relatively
robust to mis-specification of the Feller diffusion model, since intensities
and one-year conditional default probabilities are relatively close for a
wide range of alternative intensity models and reasonable parameters.

We then exploit the following result, developed in Section 2. Con-
sider a change of time scale under which the passage of one unit of “new
time” coincides with a period of calendar time over which the cumula-
tive total of all firms’ default intensities increases by one unit. Under the
doubly-stochastic assumption, and under this new time scale, the cumula-
tive number of defaults to date defines a standard (constant mean arrival
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rate) Poisson process. For example, fixing any scalar c > 0, if we define
successive non-overlapping time intervals each lasting for c units of new
time (corresponding to periods that include an accumulated total default
intensity, across all firms, of c), the doubly-stochastic assumption implies
that the number of defaults in the successive time intervals (X1 defaults in
the first interval lasting for c units, X2 defaults in the second interval, and
so on), are independent Poisson distributed random variables with mean
c. This time-changed Poisson process is the basis of most of our tests, out-
lined as follows.

1. We apply a Fisher dispersion test for consistency of the empirical dis-
tribution of the numbers X1, . . . , Xk, . . . of defaults in successive time
bins of a given accumulated intensity c, with the theoretical Poisson
distribution implied by the doubly-stochastic model.

2. We test whether the mean of the upper quartile of our sample X1, X2, . . . ,
XK of numbers of defaults in successive time bins of a given size c
is significantly larger than the mean of the upper quartile of a sam-
ple of like size drawn from the Poisson distribution with parameter
c. An analogous test is based on the median of the upper quartile.
These tests are designed to detect default clustering in excess of that
implied by the default intensities and the doubly-stochastic assump-
tion. We also extend this test so as to simultaneously treat a number
of bin sizes.

3. In order to avoid reliance on specific bin sizes, we provide the results
of a test due to Prahl [1999] for clustering of default arrival times
(in our new time scale) in excess of that associated with a Poisson
process.

4. Fixing the size c of time bins, we test for serial correlation of X1, X2, . . .
by fitting an autoregressive model. The presence of serial correlation
would imply a failure of the independent-increments property of
Poisson processes, and, if the serial correlation is positive, could lead
to default clustering in excess of that associated with the doubly-
stochastic assumption.

An appealing feature of these tests is that they are not dependent on
the correlation structure of default intensities, allowing both generality
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and robustness. We find the data broadly consistent with a rejection of the
joint hypothesis of correctly specified intensities and the doubly-stochastic
hypothesis, at standard confidence levels. We also test for the presence of
missing covariates in the PD model, which was estimated from only firm-
specific covariates such as leverage, asset volatility, and credit rating. We
are especially concerned about missing default covariates that might be as-
sociated with default clustering, such as business-cycle variables. Indeed,
we find evidence, in some tests, that certain macroeconomic business-
cycle variables should probably have been included as default-prediction
covariates. For example, the number of defaults in a given bin, in excess
of its conditional mean, is in theory uncorrelated with any variables in the
information set of the observer before the time bin begins. Among other
related results, however, we find some evidence of correlation between
Xk, the number of defaults in bin k, and macroeconomic variables such
as GDP growth that were observed before bin k begins. It is possible that
missing covariates, rather than a failure of the doubly-stochastic property,
is responsible for the relatively poor fit of the data to the joint hypothesis
that we test.

The rest of the paper comprises the following. In Section 2, we derive
the property that the total default arrival process is a Poisson process with
constant intensity under a time rescaling based on default intensity accu-
mulation. Section 3 describes our data, comprising default probabilities
and default times over a period of fourteen years. This section also de-
scribes the conversion of default probabilities into intensities. Section 4
provides various tests of the doubly-stochastic hypothesis, and Section 5
addresses the question of independence of increments of the time-changed
process governing default arrival. In Section 6 we test our default intensity
data for missing macroeconomic covariates. (This test does not depend on
the doubly-stochastic property.) Section 7 concludes. The appendices con-
tain further details on the data and estimation procedures.

2 Time Rescaling for Poisson Defaults

In this section, we define the doubly-stochastic default property that rules
out default correlation beyond that implied by correlated default intensi-
ties, and we provide some testable implications of this property.
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We fix a probability space (Ω,F , P ) and an observer’s information fil-
tration {Ft : t ≥ 0}, satisfying the usual conditions. This and other stan-
dard technical definitions that we rely on may be found in Protter [2003].
We suppose that, for each firm i of n firms, default occurs at the first jump
time τi of a non-explosive counting process Ni with stochastic intensity
process λi. (Here, Ni is (Ft)-adapted and λi is (Ft)-predictable.)

The key question at hand is whether the joint distribution of, in par-
ticular any correlation among, the default times τ1, . . . , τn is determined
by the joint distribution of the intensities. Violation of this assumption
means, in essence, that even after conditioning on the default intensities
of all firms, the times of default can be correlated.

A standard version of the assumption that default correlation is cap-
tured by co-movement in default intensities is the assumption that the
multi-dimensional counting process N = (N1, . . . , Nn) is doubly stochas-
tic. That is, conditional on the path {λt = (λ1t, . . . , λnt) : t ≥ 0} of all
intensity processes, as well as the information FT available at any given
stopping time T , the counting processes N̂1, . . . , N̂n, defined by N̂i(u) =
Ni(u + T ), are independent Poisson processes with respective (condition-
ally deterministic) intensities λ̂1, . . . , λ̂n defined by λ̂i(u) = λi(u + T ). In
this case, we also say that (τ1, . . . , τn) is doubly-stochastic with intensity
(λ1, . . . , λn). In particular, the doubly-stochastic assumption implies that
the default times τ1, . . . , τn are independent given the intensities.

We will test the following key implication of the doubly stochastic as-
sumption.

Proposition. Suppose that (τ1, . . . , τn) is doubly stochastic with intensity (λ1, . . . , λn).
Let K(t) = #{i : τi ≤ t} be the cumulative number of defaults by t, and let
U(t) =

∫ t
0

∑n
i=1 λi(u)1{τi >u} du be the cumulative aggregate intensity of surviv-

ing firms, to time t. Then J = {J(s) = K(U−1(s)) : s ≥ 0} is a Poisson process
with rate parameter 1.

Proof: Let S0 = 0 and Sj = inf{s : J(s) > J(Sj−1)} be the jump times, in
the new time scale, of J . By Billingsley [1986], Theorem 23.1, it suffices to
show that the inter-jump times {Zj = Sj −Sj−1 : j ≥ 1} are iid exponential
with parameter 1. Let T (j) = inf{t : K(t) ≥ j}. By construction,

Zj =
∫ Tj

Tj−1

n∑
1=1

λi(u)1{τi >u} du.
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By the doubly-stochastic assumption, given {λt = (λ1t, . . . , λnt) : t ≥ 0}
andFTj

, we know that Ñj+1 = {Ñ(u) =
∑n

1=1 Ni(u+Tj)1{τi >Tj} du, u ≥ Tj}
is a sum of independent Poisson processes, and therefore itself a Poisson
process, with intensity λ̃j+1(u) =

∑n
1=1 λi(u + Tj)1{τi >Tj} du. Thus Zj+1 is

exponential with parameter 1.

In order to check the independence of Z1, Z2 . . ., consider any integer
k > 1 and any bounded Borel functions f1, . . . , fk. By the doubly-stochastic
property and the law of iterated expectations, applied recursively,

E[f1(Z1)f(Z2) · · · fk−1(Zk−1)fk(Zk)]

= E[f1(Z1)f(Z2) · · · fk−1(Zk−1)E[fk(Zk) |λ,FTk−1
]]

= E[f1(Z1)f(Z2) · · · fk−1(Zk−1)]
∫ ∞

0
fk(z)e−z dz

...

=
k∏

i=1

∫ ∞

0
fi(z)e−z dz.

Thus, Z1, Z2 . . . are indeed independent, and J is a Poisson process with
parameter 1, completing the proof.

Using this result, some of the properties of the doubly-stochastic as-
sumption that we shall test are based on the following characterization.

Poisson property: For any c > 0, the random variables

J(c), J(2c)− J(c), J(3c)− J(2c), . . .

are iid Poisson with parameter c.
That is, if we divide our sample period into “bins” that each have an

equal cumulative aggregate intensity of c, then we can test the doubly
stochastic assumption by testing whether the numbers of defaults in suc-
cessive bins are independent Poisson random variables with common pa-
rameter c.
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3 Data

Our empirical tests are based on a dataset of default probabilities and de-
fault events, both of which were developed by Moody’s Investor Services.

3.1 Description of the Data

The data on default probabilities consists of a monthly time-series of esti-
mated conditional one-year default probabilities for public non-financial
North American firms over the period January, 1987 to October, 2000.
These default probabilities are the output of a logit model estimated from
the history of firm-specific financial covariates and default times. A key
covariate is the ‘distance-to-default’ measure suggested by the Merton
[1974] model, which is an estimate of the number of standard deviations of
annual asset growth by which assets exceed a measure of book liabilities.
Other covariates include financial statement information and Moody’s rat-
ing, when available. Details of the model and its econometric fit and per-
formance are described in Sobehart, Stein, Mikityanskaya and Li [2000]
and Sobehart Keenan and Stein [2000]. This database of estimated de-
fault probabilities was part of Moody’s RiskCalc system. (Moody’s sub-
sequently distributed a related default probability estimate, the Moody’s
KMV EDF, also based on distance to default.)

Key advantages of this PD dataset include: (i) it is relatively compre-
hensive, and (ii) it is consistent with Moody’s database of historical de-
faults over the sample period. In particular, the database, covering 1,990
firms, includes almost all firms that have been rated by Moody’s over this
period.

Using a separate database of defaults also obtained from Moody’s, we
identify a total of 241 defaults of the rated firms in our database. As the
default probabilities and defaults are from separate databases, much of the
matching is done manually by matching company names. Given that the
default probabilities have been computed by fitting to observed defaults,
we can verify the completeness of the matching by comparing the mean
default rate implied by the default probabilities to the actual number of
defaults. We discuss this in more detail in our analysis below. Appendix
A provides further details on the construction of the database.
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Figure 1: Cross-sectional sample mean of one-year conditional default probabil-
ities, and the number of firms covered, January 1987 to October 2000.

Figure 1 shows a plot of the monthly cross-sectional sample mean of
estimated one-year conditional default probabilities. The plot shows evi-
dence of positive correlation of default intensities, in that the cross-sectional
mean of one-year conditional probabilities of default ranges from 0.69%
to 3.11%, and increases markedly with the U.S. recession that occurred
around 2000-2001. The number of firms in our sample at a given time in-
creases from a low of 1,081 firms at the beginning of the sample period in
1987 to a high of 1,554 firms in the second half of 1998. Figure 2 shows a
plot of the number of defaults over this period, month by month, ranging
from 0 to a maximum of 8 per month, as well as a plot of the total of the
estimated default intensities of all sampled firms. We turn next to the esti-
mation of these intensities from one-year conditional default probabilities.

3.2 From PDs to Intensities

In order to test the doubly-stochastic assumption using the new-time-scale
Poisson process described in the Proposition above, we estimate default
intensities, firm by firm, from the PD data on one-year conditional default
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probabilities, as follows.

For a given firm, the default intensity process λt is assumed to satisfy
a stochastic differential equation of the form

dλt = k(θ − λt) dt + σ
√

λt dzt, (1)

where z is a standard Brownian motion, and where k, θ, and σ are positive
numbers. The doubly-stochastic assumption implies that the T -maturity
survival probability at time t, for a currently surviving firm, is

st(T ) = E

[
exp

(
−
∫ t+T

t
λu du

) ∣∣∣∣ λt

]
. (2)

Cox, Ingersoll, and Ross [1985] have provided the well-known solution:

st(T ) = A(T ) exp [−λtB(T )] , (3)

where

A(T ) =

(
2γe(k+γ)T/2

(k + γ)(eγT − 1) + 2γ

) 2kθ
σ2

(4)

B(T ) =
2eγT − 1

(k + γ)(eγT − 1) + 2γ
(5)

γ =
√

k2 + 2σ2. (6)

Inverting equation (3), we get, for any time horizon T ,

λt = − 1

B(T )
ln

[
st(T )

A(T )

]
. (7)

Our PD data are data are monthly observations of the one-year default
probability, 1− st(1). We estimate the parameters {k, θ, σ}, and the default
intensities of each firm, by a method-of-moments estimator provided in
Appendix B. The estimator matches the time-series behavior of λt implied
by the Feller diffusion, using the relationship between default intensity
and PD given by (7). Maximum likelihood estimation has also been used
in similar settings, and is efficient in large samples, but is notoriously bi-
ased in small samples. Our method-of-moments estimator is robust and
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computationally efficient, usually able to fit a given firm’s default inten-
sity model in a couple of seconds. In any case, the fit is relatively robust
to mis-specification of the time-series model and to fitting error, as inten-
sities are relatively close to one-year default probabilities. Figure 2 shows
the total of the estimated intensities of all firms, as well as the monthly
arrivals of defaults.

4 Goodness-of-Fit Tests

Having estimated default intensities λit for each firm i and each date t
(with λit taken to be constant within months), and letting τ(i) denote the
default time of name i, we let U(t) =

∫ t
0

∑n
i=1 λis1{τ(i) >s} ds be the total

accumulative default intensity of all surviving firms. Fixing time bins
containing c units of accumulative default intensity, we then construct
calendar times t0, t1, t2, . . . such t0 = 0 and U(ti) − U(ti−1) = c, and let
Xk =

∑n
i=1 1{tk≤τ(i) <tk+1} denote the number of defaults in the k-th time

bin. Figure 3 illustrates the the time bins of size c = 8 over the last five
calendar years of our data set.

Table 1 presents a comparison of the empirical and theoretical mo-
ments of the distribution of defaults per bin, for each of several bin sizes.2

The actual bin sizes differ vary slightly from the integer bin sizes shown
because of daily granularity in the construction of the binning times t1, t2, . . ..
The approximate match between a bin size and the associated sample
mean (X1+· · ·+XK)/K of the number of defaults per bin offers some con-
firmation that the underlying PD data are reasonably well estimated, how-
ever this is to be expected given the within-sample nature of the estimates.
For larger bin sizes, the empirical variances are bigger than their theoret-
ical counterparts under the null of correctly specified doubly-stochastic
intensity model of defaults.

Figure 4 presents the observed default frequency distribution, and the
associated theoretical Poisson distribution, for bin sizes 2 and 8. For bin
size larger than 4, there is a tendency for bi-modality (two peaks), as op-
posed to the uni-modal theoretical Poisson distribution associated with

2Under the Poisson distribution, P (Xi = k) = e−cck

k! . The associated moments of Xk

are a mean and variance of c, a skewness of c−0.5, and a kurtosis of 3 + c−1.
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Table 1: Comparison of empirical and theoretical moments for the distribution
of defaults per bin. The number of bin observations is shown in parentheses
under the bin size. The upper-row moments are those of the theoretical Poisson
distribution under the doubly-stochastic hypothesis; the lower-row moments are
the empirical counterparts.

Bin Size Mean Variance Skewness Kurtosis
2 2.00 2.00 0.71 3.50

(118) 2.04 1.89 0.71 3.52
4 4.00 4.00 0.50 3.25

(59) 4.07 4.00 0.41 2.06
6 6.00 6.00 0.41 3.17

(39) 6.08 8.07 0.41 2.19
8 8.00 8.00 0.35 3.12

(29) 8.14 13.12 0.26 2.07
10 10.00 10.00 0.32 3.10

(24) 10.04 15.43 0.82 2.25

the hypothesis of doubly-stochastic defaults.

4.1 Fisher’s Dispersion Test

Our first goodness-of-fit test of the hypothesis of correctly measured de-
fault intensities and the doubly-stochastic property is Fisher’s dispersion
test of the agreement of the empirical distribution of defaults per bin, for
a given bin size c, to the theoretical Poisson distribution with parameter c.

Fixing the bin size c, a simple test of the null hypothesis that X1, . . . , XK

are independent Poisson distributed variables with mean parameter c is
Fisher’s dispersion test (Cochran [1954]). Under this null,

W =
K∑

i=1

(Xi − c)2

c
, (8)

is distributed as a χ2 random variable with K − 1 degrees of freedom. An
outcome for W that is large relative to a χ2 random variable of the associ-
ated number of degrees of freedom would cause a small p-value, meaning
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Table 2: Fisher’s dispersion test for goodness of fit of the Poisson distribution
with mean equal to bin size. Under the joint hypothesis that default intensities
are correctly measured and the doubly-stochastic property, W is χ2-distributed
with K − 1 degrees of freedom.

Bin Size K W p-value
2 118 110.5 0.65
4 59 58.0 0.47
6 39 51.2 0.07
8 29 46.0 0.02

10 24 35.5 0.05

a surprisingly large amount of clustering if the null hypothesis of dou-
bly stochastic default (and correctly specified conditional default proba-
bilities) applies. The p-values shown in Table 2 indicate that, at standard
confidence levels such as 95%, there is a borderline rejection of this null
hypothesis for bin sizes 6 and 10.

4.2 Upper tail tests

If defaults are more positively correlated than would be suggested by the
co-movement of intensities, then the upper tail of the empirical distribu-
tion of defaults per bin could be fatter than that of the associated Poisson
distribution. We use a Monte Carlo test of the “size” (mean or median) of
the upper quartile of the empirical distribution against the theoretical size
of the upper quartile of the Poisson distribution, as follows.

For a given bin size c, suppose there are K bins. We let M denote the
sample mean of the upper quartile of the empirical distribution of distri-
bution of X1, . . . , XK . By Monte Carlo simulation, we generated 10,000
data sets, each consisting of K iid Poisson random variables with param-
eter c. We then compute the fraction p of the simulated data sets whose
sample upper-quartile size (mean or median) is above the actual sample
mean M . Under the null hypothesis that the distribution of the actual
sample is Poisson with parameter c, the p-value would be approximately
0.5.
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Table 3: Tests of median and mean of the upper upper quartile of defaults per
bin, against the associated theoretical Poisson distribution. The last line in the
table, denoted “All” is the probability, under the hypothesis that time-changed
default arrivals are Poisson with parameter 1, that there exists at least one bin
size for which the mean (or median) of number of defaults per bin exceeds the
corresponding empirical mean (or median).

Bin Mean of Tails p-value Median of Tails p-value
Size Data Simulation Data Simulation

2 3.62 3.63 0.58 3.00 3.18 0.25
4 6.71 6.25 0.21 6.00 5.90 0.17
6 10.00 8.81 0.05 9.50 8.42 0.07
8 12.75 11.12 0.03 12.50 10.69 0.03

10 16.00 13.71 0.02 16.50 13.26 0.00
All 0.70 0.44

The sample p-values are presented in Table 3, and suggest, for larger
bin sizes, fatter upper-quartile tails than those of the theoretical Poisson
distribution. (That is, our one-sided tests implies rejection for larger bins
of the null joint hypothesis, at typical confidence levels.)

We corroborated these results with an analysis of the tail distributions
using the Pearson χ2 statistic for the theoretical tail distribution associated
with the corresponding theoretical Poisson distribution. The results (not
reported) imply a strong rejection of a Poisson-distributed upper-quartile
distribution at standard confidence levels.

4.3 Prahl’s Test of Clustered Defaults

Fisher’s dispersion and our tailored upper-tail test do not exploit well the
information available across all bin sizes. In this section, we apply a test
for “bursty” default arrivals due to Prahl [1999]. Prahl’s test is sensitive
to cluster-like deviations from the theoretical Poisson process. This test
is particularly suited for detecting clustering of defaults that may arise
from more default correlation than would be suggested by co-movement
of default intensities alone.
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Table 4: Selected moments of the distribution of cumulative amount of inten-
sities between successive default times. Under the joint hypothesis of doubly-
stochastic defaults and correctly measured default intensities, the distribution is
exponential.

Moment Empirical Exponential
Mean 1.07 1.07

Variance 1.19 1.16
Skewness 2.13 2.00
Kurtosis 7.46 6.00

Prahl’s test statistic is based on the fact that, in the new time scale under
which default arrivals are those of a Poisson process (with rate parameter
1), the inter-arrival times Z1, Z2, . . . are iid exponential of mean 1. (Because
of data granularity, our mean is slightly larger than 1.) In contrast to the
previous tests based on a Poisson number of defaults, this test examines
instead the inter-arrival default times, which are exponential under the
null. The sample moments of these time-rescaled inter-arrival times are
provided in Table 4.

Letting C∗ denote the sample mean of Z1, . . . , Zn, Prahl shows that

M =
1

n

∑
{Zk<C∗}

(
1− Zk

C∗

)
. (9)

is asymptotically (in n) normally distributed with mean e−1 − α/n and
variance β2/n, where

α ' 0.1839

β ' 0.2431.

Using our data, for n = 240 default times,

M = 0.3681

µ(M) =
1

e
− α

n
= 0.3671

σ(M) =
β√
n

= 0.0156.



How corporate defaults are correlated 16

Because the test statistic M is within one tenth of its standard deviation
from the asymptotic mean associated with the null hypothesis of iid ex-
ponential inter-default times (in the new time scale), this test provides no
notable evidence of default clustering in excess of that associated with the
default intensities under the doubly stochastic model.

We also report a direct Kolmogorov-Smirnov test of goodness of fit of
the exponential distribution of inter-default times in the new time scale.
Figure 5 shows the empirical distribution of inter-default times after scal-
ing time change by total intensity of defaults, compared to the exponential
density implied by the doubly-stochastic model. The associated K-S statis-
tic is 1.8681, for a p-value of only 0.002, leading to a rejection of the joint
hypothesis of correctly specified conditional default probabilities and the
doubly-stochastic nature of correlated default.

In summary, while the default inter-arrival times (under the intensity-
based time change) do not fit the model-implied exponential distribution,
Prahl’s test does not indicate (bursty) default clustering in excess of what
would be implied by the doubly-stochastic property and co-movement of
the default intensities.

5 Testing for Independent Increments

Although all of the above tests depend in part on the independent-increments
property of Poisson processes, we will test specifically for serial corre-
lation of the numbers of defaults in successive bins. That is, under the
null hypothesis of doubly-stochastic defaults, fixing an accumulative to-
tal default intensity of c per time bin, the numbers of defaults X1, X2, . . . in
successive bins are independent and identically distributed. We test for in-
dependence by estimating an auto-regressive model for X1, X2, . . ., under
which

Xk = A + BXk−1 + εk, (10)

for coefficients A and B, and for iid innovations ε1, ε2 . . .. Under the joint
hypothesis of correctly specified default intensities and the doubly-stochastic
property, A = c, B = 0, and ε1, ε2 . . . are iid de-meaned Poisson random
variables. A large and positive auto-regressive coefficient B would be ev-
idence of a failure of the null hypothesis. This form of serial correlation,
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Table 5: Estimates of the auto-regressive model (10) of defaults in successive
bins, for a range of bin sizes (t-statistics are shown parenthetically).

Bin No. of A B R2

Size Bins (tA) (tB)
2 118 1.73 0.16 0.03

(7.66) (1.72)
4 59 2.72 0.34 0.12

(4.83) (2.73)
6 39 4.20 0.32 0.10

(3.97) (2.01)
8 29 6.68 0.19 0.03

(3.83) (0.96)
10 24 6.09 0.39 0.15

(2.75) (1.93)

for small bin sizes, could generate fat tails of the distribution of number of
defaults per bin for larger bin sizes, and thus could be responsible for the
apparent rejections of the Poisson distribution in the larger bins that we re-
ported earlier. This could perhaps be evidence of mis-specification of the
underlying PD model, for example through missing covariates for default
prediction. Such a result could reflect serial correlation of missing covari-
ates, causing an appearance of default clustering in excess of that implied
by the doubly-stochastic property, even if in fact the true multi-firm model
of default times is doubly stochastic.

Table 5 presents the results of this autocorrelation analysis. The AR(1)
coefficient B is always positive, and sometimes significantly larger than
zero at traditional confidence levels. Indeed, the auto-regressive coeffi-
cient B tends to be “more significant” for small bin sizes, consistent with
an interpretation of the earlier failure of the test for Poisson distributed
upper tails in large bins as potentially due to a failure of the independence
assumption for small bins, and perhaps due to mis-specification of the un-
derlying intensity model through a failure to include default covariates,
such as macroeconomic variables, that have some persistence over time.
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6 Tests for Missing Default Covariates

Our lack of support for the joint hypothesis of correctly specified default
probabilities and the doubly stochastic property might be related to miss-
ing covariates in the PD default-prediction model, a logit-based model
that uses only firm-specific covariates. In particular, this default predic-
tion model may be missing covariates that are common to many firms,
and would therefore reveal additional default time correlation under the
doubly-stochastic model.

Prior work by Shumway [2001], Lennox [1999], Lo [1986], and Duffie
and Wang [2003] indeed suggests that macroeconomic performance is an
important explanatory variable in default prediction. Among these prior
studies, Duffie and Wang included distance to default, the key covariate
in Moody’s PD model, and found significant additional dependence of
default intensities on U.S. personal income growth, for the U.S. machinery
and instruments sector for 1971 to 2001.

In this section, we explore the potential role of two macroeconomic
variables, United States G.D.P. growth rate (GDP ) and personal income
growth rate (PI). In particular, we examine (i) whether the inclusion of
these macroeconomic variables helps predict defaults in addition to the
default intensities, and if so, (ii) whether these variables can potentially
explain the apparent failure of the doubly-stochastic assumption.

We first examine whether the default intensities, based on Moody’s de-
fault probability estimates, indeed indicate mis-specification from lack of a
macroeconomic covariate. Under the null hypothesis of no mis-specification,
fixing a bin size of c, the number of defaults in a bin in excess of the mean,
Yk = Xk − c, is the increment of a martingale, and should therefore be un-
correlated with any variable in the information set available prior to the
formation of the k-th bin. Consider the regression,

Yk = α + β1PIk + β2GDPk + εk, (11)

where PIk and GDPk are the growth rates of U.S. personal income and
U.S. growth in gross domestic product observed in the quarter immedi-
ately prior to the beginning of the k-th bin. Under the null hypothesis of
correct specification, whether or not the doubly-stochastic assumption is satis-
fied, the coefficients β1 and β2 are in theory equal to zero. Table 6 reports
estimated regression results for a range of bin sizes.
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We report the results for the multiple regression as well as for each
of the variables separately. For bin sizes of both 2 and 10, the coefficient
for GDP growth rate is significant at the 99% level. For each of the bins,
the signs of the coefficients in the single equation regressions are nega-
tive as one would expect under a mis-specification of missing macroeco-
nomic variables. That is, significantly more than the number of defaults
predicted by the PD model occur when GDP and personal income growth
rates are lower than normal. Overall, there appears to be mild evidence
of mis-specification. Given the persistence of macroeconomic variables
across time, these missing covariates may be partly responsible for the
presence of the apparent auto-correlation in X1, X2, . . . that we reported in
Section 5. One may therefore wish to consider whether any excess cluster-
ing of defaults (beyond that implied by the doubly-stochastic property) is
related to this potential mis-specification of the default intensity processes.

Table 7 provides the results of of a test of whether the excess upper-
quartile number of defaults (the mean of the upper quartile less the mean
of the upper quartile for the Poisson distribution of parameter c) examined
previously in Table 3 are correlated with personal income and GDP growth
rates. We report two sets of regressions, the first set based on the prior
period’s macroeconomic variables and the second set based on the growth
rates observed within the bin-period.3

As for these upper-tail-size regressions, the estimated coefficients for
PI and GDP based on the prior period’s growth rates are not significant at
typical confidence levels. The coefficient for current-period PI for bin-size
4, however, is significant at typical confidence levels, and has a sign con-
sistent with the presence of mis-specification by failure to include macroe-
conomic performance variables in prediction of default. Overall, the ex-
tent of significance, as well as the fit (as judged from the R2) are weakly
suggestive of macroeconomic underpinnings of conditional dependence.

3The within-period growth rates are computed by compounding over the daily
growth rates that are consistent with the reported quarterly growth rates.
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Table 6: Macroeconomic Variables and Default Intensities. For each bin size c,
OLS-estimated coefficients are reported for regression of the number of defaults
in excess of the mean, Yk = Xk − c, on the previous quarter’s personal income
growth rate and the GDP growth rate. The number of observations is the number
of bins of size c. Standard errors are corrected for heteroskedasticity; t-statistics
are reported in parentheses.

Bin Size No. Bins Intercept Personal Income GDP R2

(%)
2 118 0.10 -11.15 0.37

(0.58) (-0.65)
0.49 -14.13 5.65

(2.71) (-3.03)
0.46 27.37 -19.74 6.98

(2.45) (1.33) (-3.35)
4 59 0.25 -25.39 0.93

(0.56) (-0.63)
0.76 -21.16 5.74

(1.53) (-1.76)
0.74 18.55 -24.85 6.07

(1.43) (0.41) (-1.75)
6 39 0.53 -56.34 2.14

(0.69) (-0.73)
1.26 -34.38 7.76

(1.45) (-1.58)
1.24 6.37 -35.53 7.78

(1.37) (0.08) (-1.49)
8 29 1.06 -28.35 2.93

(0.74) (-0.76)
0.13 -2.65 0.00

(0.12) (-0.03)
0.97 65.44 -42.16 4.28

(0.67) (0.59) (-0.91)
10 24 1.15 -127.60 6.10

(0.78) (-0.92)
2.62 -71.44 18.99

(1.76) (-1.97)
2.57 44.67 -81.00 19.39

(1.61) (0.37) (-2.53)
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Table 7: Upper-tail regressions. For each bin size c, OLS-estimated coefficients
are shown for regression of the number of defaults observed in the upper quartile
less the mean of the upper quartile of the theoretical distribution (with Poisson
parameter equal to the bin size) on the previous and current personal income (PI)
and GDP growth rates. The number of observations is the number K of bins.
Standard errors are corrected for heteroskedasticity; t-statistics are reported in
parentheses.

Bin Size K Intercept Previous Qtr PI Previous Qtr GDP R2

(%)
2 40 -0.05 5.23 0.35

(-0.71) (0.49)

-0.10 3.47 1.26
(-0.75) (0.84)

-0.09 -7.43 5.54 1.52
(-0.71) (-0.48) (0.89)

4 17 0.64 -25.07 10.78
(2.42) (-1.53)

0.67 -8.30 9.64
(2.52) (-1.48)

0.67 -16.99 -3.52 11.39
(2.42) (-0.67) (-0.39)

Bin Size K Intercept Current Bin PI Current Bin GDP R2

(%)
2 40 -0.00 -0.94 0.01

(-0.03) (-0.09)

-0.09 3.13 0.97
(-0.63) (0.59)

-0.08 -20.53 8.66 2.90
(-0.58) (-0.65) (0.71)

4 17 0.69 -32.96 15.71
(2.86) (-2.85)
0.55 -4.26 2.02

(2.42) (-0.68)
0.55 -72.94 17.45 26.50

(2.56) (-2.70) (1.60)
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7 Concluding Comments

Defaults cluster in time both because firms’ default intensity processes
are correlated and also perhaps because, even after conditioning on these
intensities, default occurrence is correlated through additional channels
such as contagion and frailty. The latter channels are not admitted in a
doubly-stochastic setting. By a time change that reduces the process of cu-
mulative defaults to a standard Poisson process, we provide test statistics
of the joint hypothesis that default intensities are correctly measured and
the doubly-stochastic property. We are particularly interested in whether
defaults are indeed independent given intensities. We believe this to be
the first such empirical test. For several types of tests, we reject (at tradi-
tional confidence levels) the null of correctly measured intensities and the
doubly-stochastic property, at traditional confidence levels. We present
some evidence, however, of potential mis-specification of these default
probability estimates, in that they do not include business-cycle covariates
that may offer some predictive power for default above and beyond the
role of firm-specific covariates. Moreover, there is at best weak evidence
that defaults are more tightly clustered in time than would be suggested
by common increases in their default intensities.

The economic impact of a failure of the doubly-stochastic property for
the risk management of credit portfolios is of critical interest to investors
and bank regulators. For example, the level of economic capital necessary
to support levered portfolios at high confidence levels is heavily depen-
dent on the degree to which this often-assumed property actually applies.
This is especially the case in light of the upcoming changes in bank capital
regulations under the proposed Basel II accord on regulatory capital (see
Gordy [2003], Allen and Saunders [2003], and Kayshap and Stein [2004]).
By focusing attention on a crucial practical aspect of doubly-stochastic
models, and by providing a statistical test of default clustering in credit-
sensitive asset portfolios, we hope to have provided information that is
useful in the design of models for risk management.
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Appendices

A Moody’s Data on Defaults

This appendix provides some details of the creation of the data set used in this
paper. Our source of data are two separate databases, one containing default
probabilities and the other containing information of defaults. For the empirical
work in this paper, we need to account for all the defaults that occur over our
sample of firms for which we have PDs. Below, we describe how we link the two
datasets, and the set of defaults that results from our procedures.

In its default database, Moody’s records 628 US and Canadian defaults of
non-financial firms in the period 1/87 to 10/2000. A few firms default twice over
this time period (Grand Union defaulted three times). Moody’s records defaults
only for firms that it has rated at some point in the firm’s history. The defaults
in the database are indexed by Moody’s Issuer Number (MIN). Although some
of these firms are linked to a Cusip or a Bloomberg ticker, many of the firms do
not have a link to any external identifier. However, the name of the defaulted
firm is provided, as well as some information regarding the nature of default.
Moody’s database of default probabilities is created using accounting and equity
price data, and is limited to firms that had available data in the sample period.
Our sample period is January 1987 to October 2000. This data is indexed by the
Gvkey.

The defaulted firms that have a Cusip are matched to the PD database us-
ing the Gvkey-Cusip link of the combined Compustat-CRSP database. For the
remaining firms, we do a manual match using the company name. After both
these matches, many firms remain without a Gvkey. Some of these firms do not
have Gvkeys because they are either subsidiaries, or related to the primary pub-
lic firm that has defaulted. For example, on 7 April 1987, Texaco Capital, Texaco
Capital N.V., Texaco Corporation and Texaco Operations Europe are listed as four
separate defaults. Of these, only Texaco Corporation is counted in our sample.

The number of defaults that are available for our empirical work is further
reduced as many firms were not rated by Moody’s according to our PD database
over the period 1987-2000. The final dataset, corresponding to the default of firms
that are present in the PD database over our sample period, contains 241 incidents
of defaults among a total of 1,990 firms and over 216,859 firm-months of data.
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B Estimation of Default Intensities from PDs

This appendix provides the algorithm for our iterative estimator of default inten-
sities.

1. First, we obtain starting coefficient estimates values from the regression, for
h = 1/12,

st+h(1)− st(1) = α + βst(1) + et, (12)

where α and β are the ordinary-least-squares (OLS) estimators and et de-
notes the residual. From this regression, we get initial estimates of the three
parameters as:

k = −β

h
(13)

θ = −α

β
(14)

σ =
V (e)√

θh
, (15)

where V (et) denotes the sample standard deviation of the residual et.

2. Given starting values of {k, θ, σ}, we obtain an initial estimate of the default
intensity λt, for each observation time t, using equation (7).

3. Next, we estimate by OLS,

λt+h − λt = a + bλt + wt. (16)

New parameter estimates are then given by

k̂ = − b

h
, θ̂ = −a

b
, σ̂ = V

(
wt√
hλt

)
, (17)

where, again, V ( · ) denotes sample standard deviation.4

4. Given these updated estimates of the parameters {k, θ, σ}, we return to
Steps 2 and 3, and iterate to numerical convergence.

4In the current version of our results, we use V (wt/
√

θ̂h) in place of the sample stan-
dard deviation shown in (17), although our tests indicate that this causes minimal distor-
tion in the estimated intensities.
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Figure 2: Aggregate (across firms) default intensities and firm defaults from
1987-2000.
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Figure 3: Aggregate intensities and defaults by month, 1996-2000, with time bin
delimiters marked for intervals that include a total accumulated default intensity
of c = 8 per bin.
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Figure 4: Comparison of the empirical and Poisson distributions of defaults for
bin sizes 2 and 8.
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Figure 5: The empirical distribution of inter-default times after scaling time
change by total intensity of defaults, compared to the theoretical exponential den-
sity implied by the doubly-stochastic model.
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